128
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., & Job, D., (2012). Seed
germination and vigor. Annu. Rev. Plant Biol., 63, 507–533. https://doi.org/10.1146/
annurev-arplant-042811-105550.
Rashid, A., Hollington, P. A., Harris, D., & Khan, P., (2006). On-farm seed priming for barley
on normal, saline and saline-sodic soils in North West Frontier Province, Pakistan. Eur. J.
Agron., 24, 276–281.
Rathod, G. R., & Anand, A., (2016). Effect of seed magneto-priming on growth, yield and
Na/K ratio in wheat (Triticum aestivum L.) under salt stress. Ind. J. Plant Physiol., 21,
15–22. https://doi.org/10.1007/s40502-015-0189-9.
Razmjoo, J., & Alinian, S., (2017). Influence of magnetopriming on germination, growth,
physiology, oil and essential contents of cumin (Cuminum cyminum L.). Electromagnetic
Biology and Medicine, 36, 325–329. https://doi.org/10.1080/15368378.2017.1373661.
Renugadevi, J., & Vijayageetha, V., (2013). Organic seed fortification in cluster bean
(Cyamopsis tetragonoloba L.) Taub, 335–337.
Roy, N., & Srivastava, A. K., (1999). Effect of presoaking seed treatment on germination and
amylase activity of wheat (Triticumae stivum L.) under salt stress conditions. Rachis, 18,
46–51. Barley and Wheat Newsletter.
Rozema, J., Bjorn, L. O., Bornman, J. F., Gaberscik, A., Häder, D. P., Trost, T., Germ,
M., et al., (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems—An
experimental and functional analysis of the evolution of UV-absorbing compounds. J.
Photochem. Photobiol. B, 66, 2–12.
Ruzic, R., & Jerman, I., (2002). Weak magnetic field decreases heat stress in cress seedlings.
Electromagn. Biol. Med., 21, 69–80.
Samarah, N. H., (2005). Effects of drought stress on growth and yield of barley. Agron.
Sustain. Dev., 25, 145–149. https://doi.org/10.1051/agro:2004064.
Sarraf, M., Kataria, S., Taimourya, H., Oliveira, L. S., Menegatti, R. D., Jain, M., Ihtisham,
M., & Liu, S., (2020). Magnetic field (MF) applications in plants: An overview. Plants, 9,
1139. https://doi.org/10.3390/plants9091139.
Schutzendubel, A., (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative
stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.
https://doi.org/10.1093/jexbot/53.372.1351.
Sebastiani, L., Scebba, F., & Tognetti, R., (2004). Heavy metal accumulation and growth
responses in poplar clones eridano (Populus deltoides × maximowiczii) and I-214 (P. ×
euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52,
79–88. https://doi.org/10.1016/j.envexpbot.2004.01.003.
Selim, A. F. H., & El-Nady, M. F., (2011). Physio-anatomical responses of drought stressed
tomato plants to magnetic field. Acta Astronaut., 69, 387–396.
Sen, A., & Alikamanoglu, S., (2014). Effects of static magnetic field pretreatment with and
without PEG 6000 or NaCl exposure on wheat biochemical parameters. Russ J. Plant
Physiol., 61(5), 646–655.
Sen, A., & Puthur, J. T., (2020). Influence of different seed priming techniques on oxidative
and antioxidative responses during the germination of Oryza sativa varieties. Physiology
and Molecular Biology of Plants: An International Journal of Functional Plant Biology,
26(3), 551–565. https://doi.org/10.1007/s12298-019-00750-9.
Shabrangy, A., Ghatak, A., Zhang, S., Priller, A., Chaturvedi, P., & Weckwerth, W., (2021).
Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare
L.). Front. Plant Sci., 12, 622795. doi: 10.3389/fpls.2021.622795.